B-500-MTRK-230 HDBaseT Matrix Switchers

Overview

The following information will guide the installer through simple set up and programming for serial control of a B-500-MTRX-230 HDBaseT Matrix Switchers.

Please read the entire document before any RS-232 setup.
If you have any questions about serial control after reading this document, please contact SnapAV: Technical Support.

Contacting Technical Support

Phone: (866) 838-5052 (704) 909-5229

Email: TechSupport@SnapAV.com

Before Beginning

Make sure the following items are close at hand for setup:

- B-500-MTRX-230 Matrix Switcher
- Automation system with serial output
- Automation system documentation
- B-500-MTRX-230 Owner's Manual
- Serial cables and adapters for connection between controller and matrix
- List of the functions to program into the automation system
- Knowledge of this document and the automation system being used.

Firmware Version

The information contained in this document is intended for switchers with the latest version of firmware. Please verify that you have the latest version of firmware for each switcher in the system. If the firmware version of the switcher is below the version listed here, it is recommended that it is updated.
Firmware Version: 1.0.0

Determining Firmware Version

To determine the firmware of the switcher use the programming software available on the SnapAV site.

RS232 Port Configuration

The Binary ${ }^{\text {TM }}$ HDBaseT Matrix Switcher receives control data on pin 2 (Rxd - Data Receive) and transmits control data on pin 3 (TxD - Data Transmit) of the DB9 serial port at the back of the switcher. The connection cable between the switcher and the automation system will need to be configured so that pin2 (RxD) on the HD MATRIX is connected to the Automation Systems Txd pin, and pin3 (TxD) on the HD MATRIX is connected to the Automation Systems Rxd (Receive Data) pin. See below for details.
Configuration for the Automation System control ports can vary. Refer to the documentation for the automation system you are using to ensure proper connection and configuration.

Pin	Function
2	RxD (Data Receive)
3	TxD (Data Transmit)
5	GND

In addition to the RS232 DB9, the $8 \times 8,8 \times 16$, and 16×16 switchers add an Ethernet port that can be used to control the device using Telnet Protocol. This port follows 568 A/B standards, please refer to these standards when creating wiring.

Serial Communications Format

Set the serial communications to the following format on the automation system control port.
Baud Rate : 9600 bps
Data Bit : 8 bits
Parity: None
Stop Bit : 1 bit

Output/Input Commands

The commands for the switcher are sent and received in ASCII format. With a few exceptions, the commands for control and feedback are the output and input being controlled.

Direct Output/Input Selection

Example Command Response

Select Input 3 on Output 1 0103<CR> 001 i 03
Select Input 2 on Output 3 0302<CR> o03i02
Note: Command structure must be Output followed by Input.

Next/Previous Input Selection

Example	Command	Response
Select the next Input on Output 1	$01+<C R>$	$001 i 04$
Select the Previous Input on Output 1	$01-<C R>$	$001 i 03$

Turn Outputs On and Off

Operation	Command Example Response	
Turn Output 1 Off	$0100<C R>$	$001 i 00$
Turn Output 1 On	$01 L<C R>$	$001 i 03$

Turn Switcher On or Off

Operation	Command	Example Status
System On	$01<$ CR>	p01
System Off	$00<$ CR>	p00

Output/Input Command Response

Whenever a serial or IR command is sent, a string identifying the state of the switcher is returned.
At the end of response line the system sends a <CR> and <LF>.
Output/Input Status

0	01	i	$03<\mathrm{CR}><\mathrm{LF}>$
			```Line Feed Carriage Return Input (2 Digits) \\ Identifier ( \(\mathrm{i}=\) Input) ut (2 Digits) \(o=O u t p u t)\)```

## Status Commands

## Input to Output Mapping

```
Command Function
STMAP Request Input to Output Mapping
```

Response
$\underbrace{0} 0$

When returned the response will list all outputs and their associated input for the available number on inputs on the switcher.

$4 \times 4$ Switcher Example	$8 \times 8$ Switcher Example	$8 \times 16 / 16 \times 16$ Switcher Example
001 i 01	001 i 01	$001 i 01$
$002 i 02$	$002 i 02$	$002 i 02$
$003 i 03$	$003 i 03$	$003 i 03$
$004 i 04$	$004 i 04$	$004 i 04$
	$005 i 05$	$005 i 05$
	$006 i 06$	$006 i 06$
	$007 i 07$	$007 i 07$
	$008 i 08$	$008 i 08$
		$009 i 02$
	$010 i 03$	
	$011 i 05$	
	$012 i 01$	
	$013 i 01$	
	$014 i 0$	
	$015 i 05$	
	$016 i 08$	

## Firmware Version

```
Command Function
VR Request Firmware Version
```


## Response



## Example

FW:B100.4x4.0.00.1

## IP Address (8x8 Only)

```
Command Function
IP Request IP Address
```


## Response

```
192.168.1.21
```


## Example

192.168.1.21

## Factory Defaults

```
Command Function
FASET Reset Switcher to Factory Settings
```


## Response

```
Set to Default Value
```

                        Factory Setting
    
## Example

Set to Factory Value

## Factory Values:

EDIDs: 1080p 24 bit, 2ch Stereo (embedded EDID \#2)
I/O: All Outputs set to Input 1

